Harvard Medical School Test

Introduction

"We developed a test for a disease. The false negative rate is zero ("sensivity"), the false positive rate is $\frac{5}{100}$ ("specifity") and the incidence of the disease in the population is $\frac{1}{1000}$."
"What is the probability that a randomly selected person has the disease?"
This question was posed at the Harvard Medical School to staff and students alike (see [1]), but similar questions are surely part of many Statistics introductory courses as well.

Sampling

We solve the problem by sampling.
We denote with " 0 " a person in the population which does not have the disease under question. We denote with "1" a person which does have the diesease.
Define the size of the population, the prevalence of the disease in the population and the false positive rate of the test:

In[1]:= Clear[popSize, prevalence, falsePositive];
popSize $=10000$; (* Only multiples of 1000 *)
prevalence $=\frac{1}{1000}$;
falsePositive $=\frac{5}{100}$;
Generate the population to draw from:
$\ln [5]:=$ Clear[prev, pop];
prev = prevalence * popSize;
pop = Append[Table[i-i, \{i, 1, popSize - prev\}], Table[j-j+1, \{j, 1, prev\}]] // Flatten;
Define a predicate for the result of the test, person $\in\{0,1\}$, 'True' if the test(!) delivers a positive test result, 'False' otherwise:

```
In[8]:= Clear[testQ];
    testQ[person_] :=
        Module[
            {falsePositive = First[RandomSample[Range[100], 1]],
    result = Indeterminate},
    If[person == 1, result = True];
    If[person == 0,
    Which[
        falsePositive <= 5, result = True,
        falsePositive > 5, result = False]];
    Return[result]]
```

Define a predicate whether a person really has the disease:

```
In[10]:= Clear[diseaseQ];
    diseaseQ[person_] :=
    Module[
        {result = Indeterminate},
        If[person == 0, result = False]; If[person == 1, result = True];
    Return[result]]
Do a Monte Carlo simulation to find an estimate of the probability.
```

```
ln[12]:= Timing[Module[
```

ln[12]:= Timing[Module[
{
numIter = 100 000, (* How many trials? *)
patient, (* The sample drawn *)
patientRes, (* Disease status of sample *)
testRes, (* The test results of sample *)
countDis, (* sample member with disease *)
countPos(* sample member withpos. test *)
},
patient = Flatten[Table[RandomSample[pop, 1], {numIter}]];
patientRes = diseaseQ /@ patient; testRes = testQ /@ patient;
countDis = Count[patientRes, True];
countPos = Count[testRes, True];
Print["H = People with disease: ", countDis];
Print["E = People tested 'positive': ", countPos];
Print["P(H|E): ",N[countDis/ countPos, 2]]]]
H = People with disease: 101
E = People tested 'positive': 5157
P(H|E): 0.020
Out[12]= {1.548235, Null}

```

\section*{Bayes' Rule}

It is instructive to solve for this conditional probability analytically.
To do this, we need to apply Bayes' rule:
\(P(H D E)=\frac{P(E D H) * P(H)}{P(E)}, P(H), P(E)>0\)
H denotes the hypothesis and \(E\) the corresponding evidence. Note that this is the form as derived by Thomas Bayes himself.

\section*{First Implementation}

Let's write a function which implements this rule.
In[13]:= Clear[bayesRule];
bayesRule[prior_, likelihood_, evidence_] := Module[\{\}, (likelihood * prior ) / evidence]

What are the arguments for our problem?
H = "The person has the disease.",
\(E=\) "The test for the person is positive.",
\(P(H)=\frac{1}{1000}\),

```

 P(EDH) = 1 [because the test finds the disease always (= 1- false neg. rate)],
 P(ED~H) = \frac{5}{100}(= false positive rate),
 P(E) = P(EDH)*P(H)+P(ED\negH)*P(\negH)=1*\frac{1}{1000}+\frac{50}{1000}*\frac{999}{1000}.
 ln[15]:= Clear[PH, PnotH, PEH, PEnotH, PE];
PH = 1 / 1000;
PnotH = 999 / 1000;
PEH = 1;
PEnotH = 5 / 100;
PE = PEH * PH + PEnotH * PnotH;
Clear[PHE];
PHE = bayesRule[PH, PEH, PE]
20
ln[23]:= N [PHE]
Out[23]= 0.0196271

```

\section*{Second Implementation}

We follow the approach as given in stackoverflow:
```

In[24]:= Clear[conditionalProb];
conditionalProb[pC_, pTC_, pTNC_] /; (0<pC < 1) \&\& (0<pTC \leq 1) \&\& (0<pTNC < 1) :=
Module[{}, (pTC * pC) / ({pTC, pTNC}.{pC, 1-pC})]
In[26]:= conditionalProb[1 / 1000, 1, 5 / 100]
Out[26]=}\frac{20}{1019

```

\section*{Third Implementation}

We follow the second approach as given in stackoverflow:
```

In[27]:= Remove[P];
Unprotect@Intersection;
Intersection[A_Symbol, B_Symbol] := {A, B}
Intersection[A_Not, B_Symbol] := {A, B}
Intersection[A_Symbol, B_Not] := {A,B
P[Int_List / ; Length@Int == 2] := P[Int[[2]] æInt[[1]]]P[Int[[1]]]
(*//P(B) given knowledge of P(A)//*)
P[B_, A_] := If[NumericQ@B, B, P[B æA] P[A] + P[B æNot@A] P[Not@A]]
P[Not@B_, A_: 1] := If[NumericQ@A, 1-P[B], 1-P[B, A]]
P[A_ æB_] := P[A\capB]/P[B,A]
P[Not@A_ æB_] := 1-P[A æB];
ln[37]:= P[H] = 1 / 1000
Out[37]=}=\frac{1}{1000
ln[38]:= P[Ev æHH] = 1

```

Out[38]= 1
\(\ln [39]:=\mathbf{P}[\) Ev æュ \(\mathbf{H}]=5 / \mathbf{1 0 0}\)
Out[39] \(=\frac{1}{20}\)
\(\ln [40]:=\mathbf{P}\) [ \(\mathbf{H}\) æEv]
Out[40]= \(\frac{20}{1019}\)
\(\ln [41]:=\mathbf{N}[\%]\)
Out[41]= 0.0196271

\section*{Bibliography}
1. Casscells, Ward and Schoenberger, Arno and Graboys, Thomas B., Interpretation by Physicians of Clinical Laboratory Results. New England Journal of Medicine, 1978.```

